Exploring consumer behavior through user-generated content on TripAdvisor. The case of Holguin destination
Resumen
The present study explores consumer behavior of tourists throughuser-generated content by presenting a method that utilizes online reviews and text processing techniques in analyzing behavior patterns. The current study examined 7,856 travel reviews from TripAdvisor written by international tourists visiting Holguin (Cuba) destination. This method includes the overall process of converting raw data into useful information, which comprises selection, pre-processing, data mining and interpretation. Data are collected from online review platforms rather than from traditional databases, and the first step is data crawling. Then, unstructured review content is transformed into suitable formats for analysis. The final step is exploratory data analysis, which includes both data mining and interpretation. Findings show that the cognitive dimension of the experience predominates in consumer’s behavior. The study identifies topics that could be used by destination management organizations to promote this destination and highlights the advantages of applying a data science approach.
Keywords: Consumer behaviour; User-generated content; Text mining; Sentiment analysis; Tourist destination
RESUMEN
El presente estudio analiza el comportamiento del consumidor a través del contenido generado por el usuario, al presentar un método que utiliza reseñas en línea y técnicas de procesamiento de texto para analizar patrones de comportamiento. Fueron examinados 7.856 reseñas de viajes de TripAdvisor, escritas por turistas internacionales que visitan el destino Holguín (Cuba). Los datos se recopilan de plataformas de opinión online en lugar de bases de datos tradicionales y este contenido no estructurado se transforma en formatos adecuados para el análisis exploratorio, que incluye tanto el procesamiento como la interpretación de datos. Los hallazgos muestran que la dimensión cognitiva de la experiencia predomina en el comportamiento del consumidor. El estudio identifica temas que las organizaciones de gestión de destinos podrían utilizar para promover este destino y destaca las ventajas de aplicar un enfoque de ciencia de datos.
Palabras clave: Comportamiento del consumidor; Contenido generado
por el usuario; Minería de texto, Análisis de sentimiento;
Destino turístico
Received: 2022-11-15 Accepted for publication: 2022-11-30 Published: 2022-12-31
Palabras clave
Texto completo:
PDF (English)Referencias
Antonio, N., Correia, M. B., & Perdigão Ribeiro, F. (2020). Exploring User-Generated Content for Improving Destination Knowledge: The Case of TwoWorld Heritage Cities. Sustainability, 12, 19. doi: doi:10.3390/su12229654
Cohen, S. A., Prayag, G., & Moital, M. (2014). Consumer behaviour in tourism: Concepts, influences and opportunities. Current Issues in Tourism, 17(10), 872-909. doi: 10.1080/13683500.2013.850064
Couture, A., Arcand, M., Senecal, S., & Ouellet, J. F. (2015). The Influence of Tourism Innovativeness on Online Consumer Behavior. Journal of Travel Research, 64(1), 66-79. doi: 10.1177/0047287513513159
Díaz-Meneses, G. (2019). A multiphase trip, diversified digital and varied background approach to analysing and segmenting holidaymakers and their use of social media. Journal of Destination Marketing & Management, 11, 166-182. doi: https://doi.org/10.1016/j.jdmm.2017.07.005
Fang, B., Ye, Q., Kucukusta, D., & Law, R. (2016). Analysis of the perceived value of online tourism reviews: Influence of readability and reviewer characteristics. Tourism Management, 52, 498-506.
Fazzolari, M., & Petrocchi, M. (2018). A study on online travel reviews through intelligent data analysis. Information Technology & Tourism, 20(8), 37–58. doi: 10.1007/s40558-018-0121-z
Fetscherin, M. (2019). The five types of brand hate: How they affect consumer behavior. Journal of Business Research, 101, 116-127. doi: 10.1016/j.jbusres.2019.04.017
García-García, J. A., Reding-Bernal, A., & López-Alvarenga, J. C. (2013). Cálculo del tamaño de la muestra en investigación en educación médica. Investigación en Educación Médica,, 2(8), 217-224.
Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism Management, 59, 467-483. doi: doi:10.1016/j.tourman.2016.09.009
Huang, Q. F., & Lu, Y. Q. (2017). Generational perspective on consumer behavior: China's potential outbound tourist market. Tourism Management Perspectives, 24, 7-15. doi: 10.1016/j.tmp.2017.07.008
Jiménez-Barreto, J., Rubio, N., & Campo, S. (2020). Destination brand authenticity: What an experiential simulacrum! A multigroup analysis of its antecedents and outcomes through official online platforms. Tourism Management, 77, 310-322. doi: https://doi.org/10.1016/j.tourman.2019.104022
Kotler, P., & Keller, K. L. (2006). Dirección de Marketing (9na ed.). Mexico: Editorial Prentice-Hall.
Miah, S. J., Vu, H. Q., Gammack, J., & McGrath, M. (2017). A Big Data Analytics Method of tourist behavior analysis. Informationd and management, 54, 771-785.
Miguéis, V., & Nóvoa, H. (2017). Exploring online travel reviews using data analytics: An exploratory study. Service Science, 9(4), 315-323.
Öter, Z. (2018). Hospitality marketing and consumer behavior. Journal of Hospitality and Tourism Management, 36, 111-112. doi: 10.1016/j.jhtm.2017.10.002
Oum, S., & Han, D. (2011). An empirical study of the determinants of the intention to participate in user-created contents (UCC) services. Expert Systems with Applications, 38(12), 15110-15121. doi: 10.1016/j.eswa.2011.05.098
Pantano, E., Priporas, C. V., & Stylos, N. (2017). You will like it!’ using open data to predict tourists’ response to a tourist attraction. Tourism Management, 60, 430–438.
Pestana, M. H., Parreira, A., & Moutinho, L. (2020). Motivations, emotions and satisfaction: The keys to a tourism destination choice. Journal of Destination Marketing & Management, 16, 125-134. doi: https://doi.org/10.1016/j.jdmm.2018.12.006
Serra Cantallops, A., & Salvi, F. (2014). New consumer behavior: A review of research on eWOM and hotels. International Journal of Hospitality Management, 36, 41-51. doi: 10.1016/j.ijhm.2013.08.007
Shin, Y. H., Im, J., Jung, S. E., & Severt, K. (2018). The theory of planned behavior and the norm activation model approach to consumer behavior regarding organic menus. International Journal of Hospitality Management, 69, 21-29.
Tan, G. W., Lee, V. H., Hew, J. J., Ooi, K.-B., & Wong, L.-W. (2018). The interactive mobile social media advertising: An imminent approach to advertise tourism products and services? Telematics and Informatics, 35(8), 2270-2288. . doi: https://doi.org/10.1016/j.tele.2018.09.005
Tsai, C., & Wang, Y. (2017). Experiential value in branding food tourism. Journal of Destination Marketing & Management, 6(1), 56-65. doi: https://doi.org/10.1016/j.jdmm.2016.02.003
Vu, H. Q., Li, G., Law, R., & Zhang, Y. (2019). Exploring Tourist Dining Preferences Based on Restaurant Reviews. Journal of Travel Research, 58(1), 149-167. doi: 10.1177/0047287517744672
Wang, W., & Wang, L. (2018). Merger case analysis of tongcheng and yilong, two online travel agents. Business & Economy, 13(5), 93-113.
Xiang, Z., Schwartz, Z., Gerdes, J., & Uysal, M. (2014). What can big data and text analytics tell us about hotel guest experience and satisfaction? . International Journal of Hospitality Management, 44(7), 120-130. doi: doi:10.1016/j.ijhm.2014.10.013
DOI: http://dx.doi.org/10.4067/S0718-235X2022000200184
Enlaces refback
- No hay ningún enlace refback.
Esta Revista es Editada por la Facultad de Economía y Negocios, Universidad de Talca, CHILE, 2 Norte 685, Talca. E_mail: acerda@utalca.cl o riat@utalca.cl - http://riat.utalca.cl