Exploring trajectories and tourist behavior using the entropy curve

Carla Taramasco, Alan Muñoz, Jaques Demontgeot

Resumen


The purpose of this study is to develop a new method that allows calculating the characteristics of tourist paths, favoring the understanding of visitor behavior. Changes and complexities are considered between a first phase of quasi-random "search" of attractions and tourist sites to visit, and a second phase of direct access to places of interest in the territory. This method is based on the notion of entropy curve, where a low value corresponds to a direct and rapid access to the preselected or recently defined sites, and a high value corresponds to an almost random search for tourist sites showing a more erratic behavior of the tourist. The location in space and time of the high entropy parts of the tourist trajectory would allow making better decisions related to the management of tourism in a given territory.

Keywords: Trajectories, tourist behaviors, entropy curve, tourism management, decisions.

Resumen

El propósito de este estudio es desarrollar un nuevo método que permita calcular las características de los desplazamientos turísticos, favoreciendo la comprensión del comportamiento del visitante. Se consideran cambios y complejidades entre una primera fase de "búsqueda" cuasi-aleatoria de atractivos y sitios turísticos a visitar, y una segunda fase de acceso directo a lugares de interés del territorio. Este método se basa en la noción de curva de entropía, donde un valor bajo corresponde a un acceso directo y rápido a los sitios preseleccionados o recientemente definidos, y un valor alto corresponde a una búsqueda casi aleatoria de sitios turísticos que muestran un comportamiento más errático de los sitios turísticos. La ubicación en el espacio y el tiempo de las partes de alta entropía de la trayectoria turística permitiría tomar mejores decisiones relacionadas con la gestión del turismo en un territorio determinado.

Palabras clave: trajectorias, comportamiento turístico, gestión, decisiones. 


Palabras clave


trajectories, decisions, entropy

Texto completo:

PDF (English)

Referencias


Alegre, J.,C. Juaneda (2006) Destination Loyalty: Consumers’ Economic Behavior. Annals of Tourism Research 33, 684–706.

Bayih, B.E., Singh, A. (2020). Modeling domestic tourism: motivations, satisfaction and tourist behavioral intentions. Heliyon, 6 (9)

Bovet, P., & Benhamou, S. (1991). Optimal sinuosity in central place foraging movements. Animal Behavior, 42, 57-62.

Cegur, T. (2019). 01The role of information technology in tourist information.

Cheng, W. y Zhang, Y. (2017). Research on the impact of tourism development on regional ecological environment and countermeasure based on big data. Boletin Tecnico/Technical Bulletin. 55(7). 464-470.

Cordier, P., Mendès-France, M., Bolon, P., & Pailhous, J. (1994). Thermodynamic study of motor behaviour optimization. Acta Biotheoretica, 42, 187-201.

Dicke, M., & Burrough, P. A. (1988). Using fractal dimensions for characterizing tortuosity of animal trails. Physiological Entomology, 13, 393-398.

Dodson, M. M., & Mendès-France, M. (2013). About entropy of curves. Journal of Integer Sequences, 16, 2-8.

Grinberger, A. Y., Shoval, N., & McKercher, B. (2014). Typologies of tourists’ time–space consumption: A new approach using GPS data and GIS tools. Tourism Geographies, 16 (1), 105–123.

Gu Q., Zhang H., Huang S., Zheng F., Chen Ch. (2021) Tourists’ spatiotemporal behaviors in an emerging wine region: A time-geography perspective. Journal of Destination Marketing & Management, 19.

Kotler, Bowen, Make, (2014). Marketing for Hospitality and Tourism. Pearson Education Limited, USA.

Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A. L., Brewer, D., et al. (2009). Computational social science. Science, 323, 721–723.

Lee, T.H., (2009). A structural model to examine how destination image, attitude, and motivation affect the future behavior of tourists. Leisure Sci. 31 (3), 215–236.

Li, X., C. Cheng, H. Kim, J. F. Petrick (2008). A Systematic Comparison of First-Time and Repeat Visitors via a Two-Phase Online Survey. Tourism Management 29, 278–293.

Mendès-France, M. (1983). Chaotic Curves. In M. Cosnard, J. Demongeot & A. Le Breton (Eds), Rhythms in biology and other fields of applications (pp. 344-357), Berlin: Springer Lecture Notes in Biomaths 49.

Smallman, .C y Moore, K. (2010). Process studies of tourist decisions-making. Annals of tourism research, 37(2), 397-422.

Vu H.Q., Li G., Law R., Ye B.H. (2015). Exploring the travel behaviors of inbound tourists to hong kong using geotagged photos. Tourism Managment. 46, 222-232

Wang, D., Park, S., Fesenmaier, DR. (2012). The Role of Smartphones in Mediating the Touristic Experience. Journal of Travel Research. 51(4), 371-387. doi:10.1177/0047287511426341

Wang, J., & Miller, E. J. (2014). A prism-based and gap-based approach to shopping location choice. Environment and Planning B: Planning and Design, 41(6), 977–1005. https://doi.org/10.1068/b130063p.

Xu, Y., Xue, J., Park, S., Yue, Y., (2021) Towards a multidimensional view of tourist mobility patterns in cities: A mobile phone data perspective. Computers, Environment and urban systems. 86. https://doi.org/10.1016/j.compenvurbsys.2020.101593

Zheng, W., Zhoub, R., Zhangc, Z., Zhongb, Y., Wanga, S., Weia, Z., Jia, H., (2019) Understanding the tourist mobility using GPS: How similar are the tourists?. Tourism management. 71, 54-66. https://doi.org/10.1016/j.tourman.2018.09.019




DOI: http://dx.doi.org/10.4067/S0718-235X2021000100027

Enlaces refback

  • No hay ningún enlace refback.






Esta Revista es Editada por la Facultad de Economía y Negocios, Universidad de Talca, CHILE, 2 Norte 685, Talca. E_mail: acerda@utalca.cl o riat@utalca.cl -  http://riat.utalca.cl